3.728 \(\int \frac{(d+e x)^{5/2} (f+g x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx\)

Optimal. Leaf size=219 \[ \frac{2 g^{3/2} \sqrt{d+e x} \sqrt{a e+c d x} \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c} \sqrt{d} \sqrt{f+g x}}\right )}{c^{5/2} d^{5/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 g \sqrt{d+e x} \sqrt{f+g x}}{c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)^{3/2} (f+g x)^{3/2}}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[Out]

(-2*(d + e*x)^(3/2)*(f + g*x)^(3/2))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(3/2)) - (2*g*Sqrt[d + e*x]*Sqrt[f + g*x])/(c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2]) + (2*g^(3/2)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[
g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(c^(5/2)*d^(5/2)*Sqrt[a*
d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.886983, antiderivative size = 219, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 48, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083 \[ \frac{2 g^{3/2} \sqrt{d+e x} \sqrt{a e+c d x} \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c} \sqrt{d} \sqrt{f+g x}}\right )}{c^{5/2} d^{5/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 g \sqrt{d+e x} \sqrt{f+g x}}{c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)^{3/2} (f+g x)^{3/2}}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]  Int[((d + e*x)^(5/2)*(f + g*x)^(3/2))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2)*(f + g*x)^(3/2))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(3/2)) - (2*g*Sqrt[d + e*x]*Sqrt[f + g*x])/(c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2]) + (2*g^(3/2)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[
g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(c^(5/2)*d^(5/2)*Sqrt[a*
d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 89.2581, size = 211, normalized size = 0.96 \[ - \frac{2 \left (d + e x\right )^{\frac{3}{2}} \left (f + g x\right )^{\frac{3}{2}}}{3 c d \left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}}} - \frac{2 g \sqrt{d + e x} \sqrt{f + g x}}{c^{2} d^{2} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} + \frac{2 g^{\frac{3}{2}} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )} \operatorname{atanh}{\left (\frac{\sqrt{g} \sqrt{a e + c d x}}{\sqrt{c} \sqrt{d} \sqrt{f + g x}} \right )}}{c^{\frac{5}{2}} d^{\frac{5}{2}} \sqrt{d + e x} \sqrt{a e + c d x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x+d)**(5/2)*(g*x+f)**(3/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

-2*(d + e*x)**(3/2)*(f + g*x)**(3/2)/(3*c*d*(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*
d**2))**(3/2)) - 2*g*sqrt(d + e*x)*sqrt(f + g*x)/(c**2*d**2*sqrt(a*d*e + c*d*e*x
**2 + x*(a*e**2 + c*d**2))) + 2*g**(3/2)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c
*d**2))*atanh(sqrt(g)*sqrt(a*e + c*d*x)/(sqrt(c)*sqrt(d)*sqrt(f + g*x)))/(c**(5/
2)*d**(5/2)*sqrt(d + e*x)*sqrt(a*e + c*d*x))

_______________________________________________________________________________________

Mathematica [A]  time = 0.36269, size = 150, normalized size = 0.68 \[ \frac{(d+e x)^{3/2} \left (3 g^{3/2} (a e+c d x)^{3/2} \log \left (2 \sqrt{c} \sqrt{d} \sqrt{g} \sqrt{f+g x} \sqrt{a e+c d x}+a e g+c d (f+2 g x)\right )-2 \sqrt{c} \sqrt{d} \sqrt{f+g x} (3 a e g+c d (f+4 g x))\right )}{3 c^{5/2} d^{5/2} ((d+e x) (a e+c d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]  Integrate[((d + e*x)^(5/2)*(f + g*x)^(3/2))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

((d + e*x)^(3/2)*(-2*Sqrt[c]*Sqrt[d]*Sqrt[f + g*x]*(3*a*e*g + c*d*(f + 4*g*x)) +
 3*g^(3/2)*(a*e + c*d*x)^(3/2)*Log[a*e*g + 2*Sqrt[c]*Sqrt[d]*Sqrt[g]*Sqrt[a*e +
c*d*x]*Sqrt[f + g*x] + c*d*(f + 2*g*x)]))/(3*c^(5/2)*d^(5/2)*((a*e + c*d*x)*(d +
 e*x))^(3/2))

_______________________________________________________________________________________

Maple [A]  time = 0.042, size = 343, normalized size = 1.6 \[{\frac{1}{3\, \left ( cdx+ae \right ) ^{2}{d}^{2}{c}^{2}}\sqrt{gx+f}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade} \left ( 3\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( gx+f \right ) \left ( cdx+ae \right ) }\sqrt{dgc}}{\sqrt{dgc}}} \right ){x}^{2}{c}^{2}{d}^{2}{g}^{2}+6\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( gx+f \right ) \left ( cdx+ae \right ) }\sqrt{dgc}}{\sqrt{dgc}}} \right ) xacde{g}^{2}+3\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( gx+f \right ) \left ( cdx+ae \right ) }\sqrt{dgc}}{\sqrt{dgc}}} \right ){a}^{2}{e}^{2}{g}^{2}-8\,g\sqrt{ \left ( gx+f \right ) \left ( cdx+ae \right ) }xcd\sqrt{dgc}-6\,\sqrt{ \left ( gx+f \right ) \left ( cdx+ae \right ) }aeg\sqrt{dgc}-2\,\sqrt{ \left ( gx+f \right ) \left ( cdx+ae \right ) }fcd\sqrt{dgc} \right ){\frac{1}{\sqrt{ \left ( gx+f \right ) \left ( cdx+ae \right ) }}}{\frac{1}{\sqrt{dgc}}}{\frac{1}{\sqrt{ex+d}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x+d)^(5/2)*(g*x+f)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

1/3*(g*x+f)^(1/2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(3*ln(1/2*(2*x*c*d*g+a
*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*x^2*c^2*d
^2*g^2+6*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/
2))/(d*g*c)^(1/2))*x*a*c*d*e*g^2+3*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((g*x+f)*(c*d
*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a^2*e^2*g^2-8*g*((g*x+f)*(c*d*x+a*e
))^(1/2)*x*c*d*(d*g*c)^(1/2)-6*((g*x+f)*(c*d*x+a*e))^(1/2)*a*e*g*(d*g*c)^(1/2)-2
*((g*x+f)*(c*d*x+a*e))^(1/2)*f*c*d*(d*g*c)^(1/2))/(d*g*c)^(1/2)/(c*d*x+a*e)^2/((
g*x+f)*(c*d*x+a*e))^(1/2)/d^2/c^2/(e*x+d)^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + d\right )}^{\frac{5}{2}}{\left (g x + f\right )}^{\frac{3}{2}}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^(5/2)*(g*x + f)^(3/2)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)*(g*x + f)^(3/2)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x
)^(5/2), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.924163, size = 1, normalized size = 0. \[ \left [-\frac{4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (4 \, c d g x + c d f + 3 \, a e g\right )} \sqrt{e x + d} \sqrt{g x + f} - 3 \,{\left (c^{2} d^{2} e g x^{3} + a^{2} d e^{2} g +{\left (c^{2} d^{3} + 2 \, a c d e^{2}\right )} g x^{2} +{\left (2 \, a c d^{2} e + a^{2} e^{3}\right )} g x\right )} \sqrt{\frac{g}{c d}} \log \left (-\frac{8 \, c^{2} d^{2} e g^{2} x^{3} + c^{2} d^{3} f^{2} + 6 \, a c d^{2} e f g + a^{2} d e^{2} g^{2} + 8 \,{\left (c^{2} d^{2} e f g +{\left (c^{2} d^{3} + a c d e^{2}\right )} g^{2}\right )} x^{2} + 4 \,{\left (2 \, c^{2} d^{2} g x + c^{2} d^{2} f + a c d e g\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d} \sqrt{g x + f} \sqrt{\frac{g}{c d}} +{\left (c^{2} d^{2} e f^{2} + 2 \,{\left (4 \, c^{2} d^{3} + 3 \, a c d e^{2}\right )} f g +{\left (8 \, a c d^{2} e + a^{2} e^{3}\right )} g^{2}\right )} x}{e x + d}\right )}{6 \,{\left (c^{4} d^{4} e x^{3} + a^{2} c^{2} d^{3} e^{2} +{\left (c^{4} d^{5} + 2 \, a c^{3} d^{3} e^{2}\right )} x^{2} +{\left (2 \, a c^{3} d^{4} e + a^{2} c^{2} d^{2} e^{3}\right )} x\right )}}, -\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (4 \, c d g x + c d f + 3 \, a e g\right )} \sqrt{e x + d} \sqrt{g x + f} - 3 \,{\left (c^{2} d^{2} e g x^{3} + a^{2} d e^{2} g +{\left (c^{2} d^{3} + 2 \, a c d e^{2}\right )} g x^{2} +{\left (2 \, a c d^{2} e + a^{2} e^{3}\right )} g x\right )} \sqrt{-\frac{g}{c d}} \arctan \left (\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d} \sqrt{g x + f} g}{{\left (2 \, c d e g x^{2} + c d^{2} f + a d e g +{\left (c d e f +{\left (2 \, c d^{2} + a e^{2}\right )} g\right )} x\right )} \sqrt{-\frac{g}{c d}}}\right )}{3 \,{\left (c^{4} d^{4} e x^{3} + a^{2} c^{2} d^{3} e^{2} +{\left (c^{4} d^{5} + 2 \, a c^{3} d^{3} e^{2}\right )} x^{2} +{\left (2 \, a c^{3} d^{4} e + a^{2} c^{2} d^{2} e^{3}\right )} x\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^(5/2)*(g*x + f)^(3/2)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2),x, algorithm="fricas")

[Out]

[-1/6*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(4*c*d*g*x + c*d*f + 3*a*e*
g)*sqrt(e*x + d)*sqrt(g*x + f) - 3*(c^2*d^2*e*g*x^3 + a^2*d*e^2*g + (c^2*d^3 + 2
*a*c*d*e^2)*g*x^2 + (2*a*c*d^2*e + a^2*e^3)*g*x)*sqrt(g/(c*d))*log(-(8*c^2*d^2*e
*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g + a^2*d*e^2*g^2 + 8*(c^2*d^2*e*f*g + (c
^2*d^3 + a*c*d*e^2)*g^2)*x^2 + 4*(2*c^2*d^2*g*x + c^2*d^2*f + a*c*d*e*g)*sqrt(c*
d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(g/(c*d)) +
 (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*a*c*d*e^2)*f*g + (8*a*c*d^2*e + a^2*e^3)*g^2)
*x)/(e*x + d)))/(c^4*d^4*e*x^3 + a^2*c^2*d^3*e^2 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*x
^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*x), -1/3*(2*sqrt(c*d*e*x^2 + a*d*e + (c*d
^2 + a*e^2)*x)*(4*c*d*g*x + c*d*f + 3*a*e*g)*sqrt(e*x + d)*sqrt(g*x + f) - 3*(c^
2*d^2*e*g*x^3 + a^2*d*e^2*g + (c^2*d^3 + 2*a*c*d*e^2)*g*x^2 + (2*a*c*d^2*e + a^2
*e^3)*g*x)*sqrt(-g/(c*d))*arctan(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*s
qrt(e*x + d)*sqrt(g*x + f)*g/((2*c*d*e*g*x^2 + c*d^2*f + a*d*e*g + (c*d*e*f + (2
*c*d^2 + a*e^2)*g)*x)*sqrt(-g/(c*d)))))/(c^4*d^4*e*x^3 + a^2*c^2*d^3*e^2 + (c^4*
d^5 + 2*a*c^3*d^3*e^2)*x^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*x)]

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x+d)**(5/2)*(g*x+f)**(3/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.85577, size = 4, normalized size = 0.02 \[ \mathit{sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^(5/2)*(g*x + f)^(3/2)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2),x, algorithm="giac")

[Out]

sage0*x